首页> 外文OA文献 >Estimation of the Trunk Attitude of a Humanoid by Data Fusion of Inertial Sensors and Joint Encoders
【2h】

Estimation of the Trunk Attitude of a Humanoid by Data Fusion of Inertial Sensors and Joint Encoders

机译:通过惯性传感器和联合编码器的数据融合估计类人动物的躯干姿态

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The major problem associated with the walking of humanoid robots is to main- tain its dynamic equilibrium while walking. To achieve this one must detect gait instability during walking to apply proper fall avoidance schemes and bring back the robot into stable equilibrium. A good approach to detect gait insta- bility is to study the evolution of the attitude of the humanoid's trunk. Most attitude estimation techniques involve using the information from inertial sen- sors positioned at the trunk. However, inertial sensors like accelerometer and gyro are highly prone to noise which lead to poor attitude estimates that can cause false fall detections and falsely trigger fall avoidance schemes. In this paper we present a novel way to access the information from joint encoders present in the legs and fuse it with the information from inertial sensors to provide a highly improved attitude estimate during humanoid walk. Also if the joint encoders' attitude measure is compared separately with the IMU's atti- tude estimate, then it is observed that they are different when there is a change of contact between the stance leg and the ground. This may be used to detect a loss of contact and can be verified by the information from force sensors present at the feet of the robot. The propositions are validated by experiments performed on humanoid robot NAO. Copyright © 2013 by World Scientific Publishing Co. Pte. Ltd.
机译:类人机器人行走的主要问题是在行走时保持其动态平衡。为了实现这一目标,必须在步行过程中检测步态不稳,以应用适当的避免摔倒方案并使机器人恢复稳定状态。检测步态不稳定性的一种好方法是研究人形躯干姿态的演变。大多数姿态估计技术都涉及使用位于躯干处的惯性传感器的信息。但是,像加速度计和陀螺仪这样的惯性传感器极易产生噪声,从而导致不良的姿态估计,从而导致错误的跌倒检测并错误地触发避免坠落方案。在本文中,我们提出了一种新颖的方式来访问腿部关节编码器提供的信息,并将其与惯性传感器的信息融合在一起,从而在仿人行走过程中提供高度改进的姿态估计。同样,如果将联合编码器的姿态测量值与IMU的姿态估计值分别进行比较,则可以观察到,当站姿腿和地面之间的接触发生变化时,它们是不同的。这可以用于检测接触的丢失,并且可以通过机器人脚上的力传感器的信息进行验证。通过在类人机器人NAO上进行的实验验证了这些命题。世界科学出版公司版权所有©2013。有限公司

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号